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Abstract

Black-holes are immensely useful areas of interest in general relativity. Previous works of

Bekenstein, Zeldovich, Penrose, Hawking and others have helped formulate an understanding

of Black-Holes treating them as thermodynamic objects. Employing general relativistic results

and introducing quantum fluctuations yield, via sophisticated derivations, relatively elementary

expressions resembling classical thermodynamic results. One such important result comes in

the form of ’Hawking Radiation’, which claims Black-Holes emit radiation and possess a surface

temperature. Another concept ubiquitous to discussions in cosmology is the Cosmic Microwave

Background radiation that permeates all of observable universe. Black-holes, therefore, both

emit Hawking Radiation and absorb Cosmic Microwave Background radiation.

Additionally, in our expanding universe, the temperature of CMB evolves over time as a

function of the scale factor due to redshift. Thus, evolution of Black-Hole surface temperature,

when soaked in a bath of changing CMB radiation, towards an equilibrium temperature be-

comes an interesting problem. Do Black-holes evaporate? Which thermodynamic contribution

dominates such dynamics? These are the kinds of question I shall explore in this paper after

introducing some basic ideas related to Blackholes and CMBR.
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1. Introduction

The primary objective of this project is to employ a law of blackhole (BH) thermodynamics with

the consideration for the presence of dynamic Cosmic Microwave Background Radiation (CMBR)

and gain insights about BH time evolution. To keep the report as complete, comprehensive and

self-contained as possible, I have structured it in a way such that first elementary ideas about

CMBR and BHs (within the context of thermodynamics) are introduced before jumping into the

core content.

2. Cosmic Microwave Background Radiation

Though the night sky appears dark to human eyes, to a sensitive enough telescope there appears to

be a faint glow spread across the sky primarily in the microwave region. The accidental discovery

of this microwave background radiation resulted in a Nobel prize for Wilson and Penzias in 1978

because it served as an important evidence for the standard Big Bang cosmological model. The

principle theme of this section is to find an expression for temperature of CMBR in terms of time.

2.1 Early Universe and Recombination

According to the Big Bang inflationary model, our universe during its infancy was much denser,

hotter and filled with an opaque hydrogen plasma. However, as the universe expanded, it grew

cooler and eventually reached a temperature that permitted the formation of neutral hydrogen

atoms from the electrons and protons available (below 3000K, as modelled to first approximation

by the Saha Equation). Unlike the free charges, neutral hydrogen atoms could not partake in

Thomson scattering and the universe turned transparent. This period is named as the epoch of

Recombination, which is a slight misnomer because the charges combined for the first time during

this epoch.

2.2 A Perfect Blackbody

We have made very precise measurements of the CMBR and concluded that it behaves extremely

close to how a perfect blackbody at a uniform temperature of 2.72548 ± 0.00057K (refer Fig. 1)

would behave. However, a raw observation of CMBR would not reflect this isotropy. There are
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several anisotropies in the CMBR as observed from Earth and the primary one is caused due to the

Doppler effect of Earth’s motion around the sun. Further anisotropies are caused due to the redshift

of light as it moves through a gravitational well (Integrated Sach-Wolfe Effect), distortion due to

high-energy electrons in galaxy cluster (Sunyaev-Zeldovich effect), density perturbations in early

universe that correspond to large scale structures observed today and more. Characterizing and

modelling the fluctuations in CMBR is a pursuit that involves rich physics (beyond the mandate

of this paper) and is very valuable in establishing the robustness of Standard Model of Cosmology.

Figure 1: Latest probe of CMBR conducted by ESA’s Planck satellite in 2013 demonstrating the
difference between hot and cold regions of the magnitude of 0.00001 K after known anisotropies

have been filtered out

As demonstrated by Fig. 2, CMBR is one of the most perfect physical examples of a Black Body

that we have studied. Note that though CMBR has cosmological origins and is a (very) large scale

phenomena, it is still essentially not much different from the cavity radiation analysed during the

undergraduate thermal physics class.

2.3 Expansion and CMB Temperature

The temperature of CMB does not remain constant over time and is affected by Cosmological

Redshift. To build towards a final expression, we first need to familiarize ourselves with the concept

of cosmological red-shift. As per observations and theory, we live in an expanding universe. As the

space between the observer (in our case Blackhole) and CMBR expands, the radiation gets red-

shifted. This red-shift is the reason why the background radiation is currently in the microwave

regime, even though it was much hotter when it was emitted during the recombination epoch. This
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Figure 2: Data from the observations of Comsmic Microwave Background Radiation Spectrum
tightly fitting a perfect Black Body Curve. Image Source: Duke University

cosmological red-shift is characterized by the red-shift parameter (generally denoted by z). We

define the red-shift parameter as -

λo = λe(1 + z)

where λo is the observed red-shifted wavelength and λe is the wavelength during when emitted from

the original source. This is a completely general formula and is not restricted only to the study of

CMBR. Further, from Wein’s Displacement Law, we know that for any blackbody -

λmax.T = W

W being the Wein’s constant. Using simple manipulations, we can get -

λoTo = λeTe =⇒ (1 + z)λeTo = λeTe

=⇒ To =
Te

(1 + z)

Therefore, the temperature of CMBR is related to the cosmological red-shift parameter. Remember,

that in our expanding universe z = z(t). Since the red-shift is caused due to the expansion
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of the universe, we bring into discussion another important variable in the study of cosmology

- (nondimensionalized) scale factor a(t). A widely understood and useful relation in cosmology

(Carroll and Ostlie) is -

1 + z(t) =
a(t)

a(te)

Where a(te) is the scale factor of the universe at the time of emission (in simple words, numerator

is scale factor ‘now’ and the denominator was the scale factor ‘then’). Therefore, we end up with

T (t) = Te
a(te)

a(t)
(1)

Now, to understand time evolution of CMBR temperature, we need to understand time evolution

of scale factor. This is far from elementary and it goes without saying that I would be using some

results without demonstrating rigorous proofs of them. To make a crude analogy, we can think

that the following analysis treats the universe as a fluid of sorts with galaxies acting as molecules

in a gas. Though the analogy is incomplete, it is instructive to employ it when discussing density,

pressure, expansion, contraction, continuity etc. of the universe. The expansion of the universe,

at least within our FRW cosmology, can be modelled by the using any one of the two Friedmann

Equations (2) (Hartle) (
ä

a

)
= −4πG

3
(ρ+

3p

c2
) (2)

and the fluid Equation (3).

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
(3)

Here, ρ is the matter-energy density in the universe, p is the pressure and k represents the curvature.

It is also useful to define the Hubble Parameter as H = ȧ/a. We are restricting ourselves to a flat

universe where k = 0, which is a reasonable consideration at the length scales we are concerned

with.

Since the system of the Friedmann equations and fluid equation is not independent, one can use

any two equations to derive the third. Remember ρ and p also change with the scale factor. This

means we currently have three unknowns variables (a, p and ρ) and only two equations. Thus, we

will need an Equation of State that associates pressure with density and is defined for a perfect

fluid as -

p = wρ

Further, the matter-energy density has three different contributions and each of them have a cor-

responding value of constant w 1. Therefore, it is helpful to define density in terms of relative

density factors of each contribution (Carroll and Ostlie). We also know the values of several of

1It is yet another simplification to assume w remains constant in time. When studying the behavior of w parameter
in cosmology, we start approaching some open theoretical questions
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the mentioned parameters at current time t0 via the observational evidence collected by WMAP 2.

Note that ρc is the critical density and is defined as 3H2/8πG.

1. Matter Contribution This contribution is made by all the Baryonic and dark matter in

the universe; Ωm,0 = ρm(t0)/ρc = 0.27±0.04. Of this, ordinary Baryonic matter makes up for

only 17% and the rest is dark matter. On the length scales involved, the pressure contribution

of matter is negligible (w = 0) and its density drops along with volume of the universe. So,

pm = 0 and ρm(t) = ρm(t0)/a(t)3.

2. Radiation Contribution This contribution is made by all the relativistic particles like

photons and neutrinos; Ωr,0 = ρr(t0)/ρc = 8.24 ∗ 10−5 ± 0.04. As per special relativity, for

radiation pr = (1/3)ρr. Thus, w for radiation is (1/3). Radiation density also falls off with

the volume of the universe but the radiation also loses energy due to expansion. So, the

inverse proportionality is stronger giving us ρr(t) = ρr(t0)/a(t)4.

3. Vacuum Energy Contribution This contribution is made by Vacuum Energy (or so called

Dark Energy) and is currently the dominant influence on dynamics at cosmological scales;

Ωv,0 = ρv(t0)/ρc = 0.73± 0.04. For the equation of state parameter w of vacuum energy, we

do not have well accepted theories. We only know it has a negative value and it seems to be

in the vicinity of -1. And from fluid equation, we get ρv(t) = (1 + 3w)ρv(t0)/a(t)3w+2.

On combining the equation of state, fluid equation and Friedmann acceleration equation and then

substituting the density fractions and Hubble Parameter we get -

ä = −4πG

3
ρc

[
Ωm,0

a2
+

Ωr,0

a3
+ (1 + 3w)

Ωv,0

a3w+2

]
=
−ȧ2

2a2

[
Ωm,0

a2
+

Ωr,0

a3
+ (1 + 3w)

Ωv,0

a3w+2

]
This second order ODE can be solved numerically using the initial conditions a(t0) = 1 and ȧ(t0) =

H0 = 7.1 ∗ 10−11yr−1

3. Black Hole Basics

Now that we have a brief understanding of the temperature of CMBR, let us equip ourselves with

concepts from Blackhole thermodynamics that we need to model our system. As mentioned earlier,

complete derivations of some of the equations are challenging endeavours that involve both General

Relativity and Quantum mechanics. Instead of trying to develop a complete rigorous understanding

2There are scientists who raise contentions when the interpretations of WMAP results are discussed. Notably
Prof. Subir Sarkar’s group raises issues with model based inferences drawn from WMAP data. Upcoming telescope
ELT would enable realtime cosmology and should be able to clarify some of the confusions regarding the nature of
accelerated expansion of universe
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of these, we shall have an application based approach towards the laws. Like before, the primary

goal here is to reach an equation of temperature of black-hole as parameterized by time.

3.1 Characterizing Schwarzschild Blackholes

The simplest form of Blackhole that we can study is the Schwarzschild Black Hole. It possesses

complete spherical symmetry, no charge and no angular momentum. On the other hand, the most

general black hole that one might expect to encounter is the Kerr-Newman Blackhole which is

characterized by only three variables - Mass, Charge and Angular Momentum. The idea that a

black-hole can be described in complete detail by very few macroscopic properties should already

start hinting towards the fundamental ideas of thermodynamics (Steane). Work can be extracted

from a rotating blackhole and a charged blackhole. Since the analysis of work could be thermo-

dynamic interest in some cases, I decided to mention it here. However, for our study, we are

only concerned with the exchange of energy in our system. So, we shall restrict our mathemat-

ical formulation to that of a Schwarzschild BH but it is not too difficult to generalize it for any

blackhole.

A Schwarzschild BH has an event horizon radius that is called the Schwarzchild Radius (parame-

terized by the mass) and it is calculated using the following expression.

Rs(M) =
2GM

c2

Naturally, the surface area of the Blackhole event horizon would then be

As(M) = 4πR2
s =

16πG2

c4
M2 (4)

Now, we move to the next important piece of the problem.

3.2 Hawking Radiation

Hawking predicted that Black-Holes must emit radiation due to quantum effects near the event

horizon. This was a surprising idea because conventional BH wisdom prescribed that they suck

everything in and do not radiate outwards. The colloquial explanation for this contradictory phe-

nomena is that, due to quantum effects, pairs of virtual particles spontaneously come into existence

in space. If this happens very close to the horizon, one of the particles gets sucked inside while the

other escapes to infinity.

The existence of Hawking Radiation meant that there must be a temperature associated with the

Black-Hole too, which now we simply term Hawking Temperature or temperature of the BH (Barry
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P.). This temperature can be calculated using the following relation -

TBH =
~K

2πckB

where, K is the surface gravity of the BH evaluated at the event horizon and other universal

constant retain their usual designations. Surface gravity for a Schwarzschild BH is given by -

K =
c4

4GM

Plugging K back in the expression for Hawking Temperature, we get -

TBH =
~c3

8πkBGM

Notice that the temperature of the blackhole is inversely proportional to its mass. Thus, smaller

blackholes are hotter while larger blackholes are cooler. Because we know that E = Mc2, radiating

blackholes could equivalently be understood as blackholes losing mass. As the blackhole radiates,

it loses some of its mass and gets hotter. Hotter blackholes radiate more (due to to Stefan-

Boltzmann Law, as discussed later) and keep shrinking and growing even hotter. This leads to a

runaway process called Blackhole evaporation that should emit enormous amounts of energy into

the universe as M tends to zero. Such a phenomena has never been observed and the analysis that

follows should explain why this has been the case.

Lastly, we now know that radiating blackholes lose mass. This means mass of the blackhole does

not remain constant and evolves over time i.e. M = M(t). Therefore,

TBH [M(t)] =
~c3

8πkBGM(t)
(5)

4. Solving our System

Finally, I have introduced all the pieces of the problem and can start solving the system. The goal

is to model how a blackhole would behave as it radiates hawking radiation and absorbs cosmic

microwave background radiation. We would start off by analysing each of the pieces individually

and then combining them to get a final time dependent state evolution equation.

4.1 Setting Up Equations

Since emission and absorption are both happening via radiation, we use Stefan-Boltzmann Law

L = σAT 4
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But luminosity is nothing but radiant power. So,

dE

dt
= L = σAT 4

From mass-energy equivalence,
dE

dt
= c2dM

dt
= σAT 4

If we only consider the Hawking Radiation and apply the Stefan-Boltzmann Law,

dMout

dt
=
σ

c2
∗A(M) ∗ TBH(M)4

From earlier results, Eq (4) and Eq (5) give

dMout

dt
=
σ

c2
∗
[

16πG2

c4
M(t)2

]
∗
[

~c3

8πkBGM(t)

]4

On simplifying,
dMout

dt
=

[
σ~4c6

256k4
BG

2

]
1

M(t)2
(6)

This is the rate at which the blackhole loses mass due to Hawking Radiation. Now, let us shift our

attention towards the mass gained due the absorption of CMBR. In this case, the energy flux is

given by

F = σT 4
CMB

But, from the definition of Flux we can get FA = L = dE/dt = c2dM/dt. So, again we do a similar

analysis using the temperature of CMBR.

dMin

dt
=
σ

c2
∗A(M) ∗ T 4

CMB

From Eq (4) and Eq (1),

dMin

dt
=
σ

c2
∗
[

16πG2

c4
M(t)2

]
∗
[
Tea(te)

a(t)

]4

On simplifying,
dMin

dt
=

[
16πσG2T 4

e a(te)
4

c6

]
M(t)2

a(t)4
(7)

Lastly, it is obvious that
dMnet

dt
=
dMin

dt
− dMout

dt
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Plugging in Eq (6) and Eq (7) and defining new constant substitutions will give us the final differ-

ential equation that governs how the Blackhole evolves over time

dMnet

dt
=
K1M(t)2

a(t)4
− K2

M(t)2
(8)

Here, K1 = [16πσG2T 4
e a(te)

4/c6] and K2 = [σ~4c6/256k4
BG

2].

4.2 Analytical Results

In Eq (8), had there not been the a(t) term (or if it was constant), we could have separated the

variables on either side of the equality and integrated the ODE (using appropriate substitutions)

to get an explicit solution for M(t). This has been attempted in earlier works (Mahulikar S.).

However, the introduction of dynamically evolving temperature of CMBR made the differential

equation highly non-linear. One analytical treatment that we can do is to set dMnet/dt = 0 to find

the time after which a (non-feeding) blackhole of certain mass reaches equilibrium with CMBR.

We get an analytical result for equilibrium time by assuming a limit solution of the Friedmann

equation. Such a limit solution would not be valid for the entire span of the time scale involved.

If we were to set up our system in the deep future of our FRW universe, however, then one can

reasonably assume that vacuum fraction overpowers all other density terms. In such a case, we

would get
dMin

dt
=
dMout

dt

On plugging in the derivatives and limit solution of scale factor a(t) ≈ ect
√

Λ/3,

K1M
2

eteq4c
√

Λ/3
=
K2

M2

On rearranging,
K1

K2
M4 = eteq4c

√
Λ/3

Finally, on taking the log of both sides and rearranging further,

teq =
1

4c
√

Λ/3
ln

(
K1M

4

K2

)

4.3 Computational Results

Finally, I decided to numerically integrate the final state evolution differential equation to model

our Blackhole in python. I used the astropy library to check the dimensional validity of the

equations that I had worked out. The dimensions of the LHS of Eq (8) were [M ][T ]−1. By using
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the astropy.units and astropy.constants package, I verified the following -

1. The units of K1 ∗M2 were Ws2/m2, which is equivalent to Kg/s. i.e. [M ][T ]−1

2. Similarly, the units of K2/M
2 were Kg/s i.e. [M ][T ]−1

3. The scale factor a(t) was verified to be dimensionless.

I used the RK4 numerical integration scheme to simulate the system. As mentioned earlier, the

intial conditions were t0 = 0, a(t0) = 1, ȧ(t0) = H0, M(t0) = 10M� and T (t0) = 2.75K. From t0, I

ran my integrator backwards until a(t) < 0.0009 and forward for 40 billion years (or 40 Giga-annum)

in the future. Now, we have everything we need to run the simulation.

5. Conclusion

The result of numerically integrating Friedmann Equation is displayed in Fig. 3. At t = 0 (current

time), the scale factor is 1 and as the integration was run backwards in time, scale factor started

asymptotically approaching zero rapidly about 13.5 billion years ago. This is also roughly what

cosmologists suspect might be the age of our universe.

Figure 3: Evolution of Scale Factor of the universe when run backwards approaches a singularity
roughly 13.5 billion years ago
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Two clear inflection points are noticeable in the curve when analysed carefully and these represent

transitions between radiation dominant era to matter dominant era and, then, from matter era to

dark-energy dominant era. 40 billion years in the future, my simulated universe seems to be 12

times its current size.

With a model for the evolution of scale factor, the next thing I tested was the temperature of CMBR.

The results are displayed in Fig. 4. The change in temperature spanned orders of magnitude

and to properly express the change I decided to plot a semi-log graph. In accordance with the

popular understanding, there was a rapid drop in temperature a few years after the Big Bang. The

temperature drop has slowed down now and the temperature is asymptotically approaching zero in

the far future.

Figure 4: Evolution of Scale Factor of the universe when run backwards approaches a singularity
roughly 13.5 billion years ago

CMB corresponds to a redshift factor of z ≈ 1100 (Carroll and Ostlie). I manually plugged in

the redshift factor and back-calculated using the program to find the temperature of CMBR at

z = 1100 to be roughly 2000 K. This is off from what Saha Equation predicts (3000K) but this

loss in accuracy is to be expected, partly due to error in numerical integration and partly (rather,

primarily) due to the system’s inefficiency to model the radiation dominant era well. This is why, I

took extra care that I place my blackhole evolution analysis away (in time) from radiation dominant

era.
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Finally, I modelled the complete mass evolution equation. This was, ironically, the most under-

whelming result (in some sense). My program kept plotting a straight line representing constant

mass through time. When I calculated manually using the program, the change in mass over a

period of 50 billion years remained zero.

Figure 5: Mass Gain and Mass Loss rates of a Black-Hole of 10M� (as of 7 Billion Years in the
past from now) studied for 47 Billion Years

After checking my theory and code multiple times, I can confidently assert the final findings of my

study. To understand the time evolution of BH, it is more instructive to visualize the individual

mass change rates across time as done in Fig. 5. The first thing that is clearly evident is that the

mass lost due to Hawking radiation is an extremely small quantity of the order of 10−60M�/Gyr

(or 10−39 Kg/yr). This was, at least to me, a surprising result. A non-feeding blackhole which is

10 times the mass of our sun, loses less mass in a year due to Hawking Radiation than the mass of

an electron. To even have the ˙Mout quantity show up on the graph, I had to scale it up by a factor

of 1032. Why it appears to be constant would also be clear in a moment.

Turning our attention to the mass gain rate, we see it spans over multiple orders of magnitude as

the scale factor evolves and is much greater than the mass loss rate. However, even the mass gain

rate is of roughly of the order of 10−25 to 10−35M�/Gyr. Compared to the mass of the blackhole

(10M�/Gyr), these quantities are extremely minuscule. The reason why the mass of the blackhole

appeared constant over almost 50 billion years was because the changes were happening after the

25th decimal place and python was clearly not working under that level of precision. Since the
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Hawking radiation depends on mass of the blackhole and the mass remained constant throughout

the simulation, the intensity of Hawking radiation remained constant too.

I tried to nondimensionalize the ODE in hopes of finding a scale factor that helps in demonstrating

some behavior of the system. However, modelling even the nondimensional ODE still gave constant

mass results as before. The behavior of the mass of a non feeding blackhole in a CMBR bath on

the scale of Giga years is simple - almost nothing happens to it.

However, it is immediately clear that even an orphan blackhole in the middle of nowhere that does

not have any matter to feed on, would gain mass much more quickly than the rate at which it will

lose mass. This explains why we have never observed Black hole evaporation until now; such events

require initial conditions that are extremely unlikely to occur. Further, the results make it clear

that blackholes are some of the most robust astrophysical objects that function on timescales much

larger than the age of the universe itself.
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